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SUMMARY

The problem of the three-point body of revolution that has minimum
wave drag, based on linearized supersonic-flow theory, has been solved
formally without resort to slender-body approximations. The eveluation
of the source-distribution function, as well as the body shepe, requires
numerical procedures. Complete calculations are made for the special
case of a closed body with a given section (the third point) at the mid-
body position. The existence of a corner at the third point is found to
be characteristic of a linear-theory solution of the minimum-drag three-
point problem. The conclusion is reached that the influence between the
forward and rearward portions of a closed body results in a small increase
in the radii of the minimum-drag shape.

INTRODUCTION

A lerge number of minimum-drag problems have been solved by using
the slender-body approximation to the linearized supersonic-flow theory.
In 1935 Von Kérmén (ref. 1) determined the projectile tip that has mini-
mum weve drag according to slender-body theory. Later Sears (ref. 2)
and Haack (ref. 3), using slender-body theory, determined minimum-wave-
drag shapes for projectile tips and closed bodies of revolution subject
to various combinations of euxiliery conditions of constant length, con-
stant caliber, and constant volume.

Ferrari (refs. 4 and 5) has considered the minimum-drag problem for
the length-celiber body and the ducted body on the basis of linear theory
without resorting to the slender-body approximastion. Because he used
the linearized drag intégral in the triple-integral form, Ferrari found
it necessary to use a series expansion for the source-distribution func-
tion, which introduced considersble complexity at an early stage in the
anslysis. Recently Parker (ref. 6) reduced the linearized drag integral
for bodies of revolution to a double-integral-form and determined, with-
out resort to slender-body theory, the minimum-wave-drag shepe for a
transition section between two semi-infirdte cylinders, a special case
of which is the projectile tip.
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This paper presents a linear-theory solution to the problem of deter-
mining the three~point body of revolution that has minimum wave drag. The
body configuration is the transition section of reference 6 with the addi-
tional requirement that the section must bhave a given arbitrary radius at
a glven arbitrary position (the third point). The linearized drag integral
in double-integral form from.reference 6 is used, and two auxiliary condi-
tions similar to the one utilized in reference 6 are employed. The source
distribution for minimum drag is obtained in a closed form involving a
single integral of elliptic type which, presumably, is most conveniently
treated numerically. Determinastion of the shepe requires an additional
numerical procedure. A closed body with the maximm section at the mid-
point is chosen for a complete calculation. The minimum-drag shepe has
a corner at the position of the third point. For this special case the
shape i1s slightly asymmetric. The radii downstream of the maximum sec-
tion ere sbout 1 percent larger than the corresponding radii upstream.

SYMBOLS
a axial coordinate of fixed third point
c constant factor in source-distribution function for special
body, £t/sec
D drag, lb
i id source-dlstribution function
£ derivative of £ with respect to its argument
L an axial distance in equation (1) such that when x 2 L there

is no momentum flow through the control cylinder of radius Rp

M free-stream Mach number

r radisl distance in cylindricel coordinstes

R radius of gensere;l point on body

Rg radius of upstream cylinder .

Ry radius of downstream cylinder

Ry radius of fixed third point

i step function (unity for negative argument, zero for positive

argument) .
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U free-streem velocity, ft/sec

Ve radial velocity, f£t/sec

b 4 axlel distance in cylindrical ceordinates

g= M2 -1

s variation in derivative of source-distribution 'ﬁmction
p free-stream density, slugs/cu £t

Mo Lagrengian multipliers

E,n dummy variables of integration
(o] axial coordinate where sources begin

A1l distances are made dimensionless by using the length of the body
as the unit of measurement.

ANALYSIS

The linearized drag integral for a body of revolution is (ref. 6)

I-pRy pL-BR; al@ - e (@ - ) - poRy2
D= :rpj; j; £'(g) £'(n) cosh BRL(E = ) dt dn

(1)

Equation (1) gives the drag of an axial distribution of sources f(&)
which begins at o and is subject to the condition that there be no
momentum flow through the control cylinder of radius R; for x 2 L.

Figure 1 is a schematic representation of the general configuration.
The downstream end upstream cylinders are of radius R; and Rp, respec-
tively. The body contour is required to have the radius Ry at x = s,
the third point of the "three-point problem.” The distances Ry and a

are given, arbitrary velues; that is, the drag is not minimized with
respect to the location of the third point. The radius of the control
cylinder of equation (1) is taken as R;, the radius of the downstream

cylinder. For all lengths, the length of the body is used as the umit
of measurement.
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The two auxiliary conditions require that the point (1,R]) be
on the same streamline as (0,Rp), that is,

1
pUn(R12 - Rp2) = 2xp f  Ryve(x,Ry) ax (2)
8 (R1-Ro)

and that the third point (a,R;) be on the same streamline as (o,Rp),
that is, .

a
oU(Ra? - Ro2) = 2xp f Ravy(x,Rg) ax (3)
B(Ra-Rp)

From the general solution of the linear supersonic-flow equation for
the case of axial symmetry, the radisl velocity is given by (ref. 1)

x-pr t
ve(x,r) = L L) (x - £)a (%)
»(x rjim V(x-§)2-32r2

In the present problem =£'(t) venishes for & < -BRg = 0. Inserting

equation (4) into equations (2) and (3), interchanging the order of inte-
gration, and Integrating over x yields

"1-BR
Ury? - Ro?) = f-sno ' f'(g)\/(l -2 -8 (5)
and
Un2_go o [ Fe, 2 _ aop 2 6
Yo - 22 = [ £ /(a - )2 - o2 at (6)

~Ro
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For the minimizing process which is to follow, it is mathematically
convenient to change the integral in equation (6). to an integral over

the range -BRp to 1 - BRy by defining a step function _Z(g-a+BRa;)
such that

I(t-a+pRg) = 1 (¢ £ a - BRa)

p (7
J(&-e4BRg) = 0 (¢ > a - BRa)

Therefore, equation (6) may be written

1-8R
gmaz - Rp?) = f 1_Z(§-a+BRa) f'(g)\/(a - )2 -p%R,2 A& (8)
-BRg

The problem of minimizing the drag given by equation (1) with
0= -pRp and L = 1, subject to the auxiliary conditions given by equa-

tions (5) and (8), can be expressed in the ususl mammer of the calculus
of variations. The expression

14R; [L-BR Lla- e - -
!,8,Rg,R = £'(z) £'(n) cosh ag an +
0" 2R0: By, %) f-ano f-smo YT me-n |

1R 1-8R
2y f £1() \ﬁl -02-pmPasran f ! 1(s-0s880) r'(;)\/(a - 62 - g2 &
-BRo -PRo
(C)]
(where constant factors have been absorbed into the Legrangian multipliers

A1 and Ap) must have a zero variation corresponding to an arbitrary small
varistion &f' in £'; that is,

G‘(f""af':a:RO:Rl:Ra) - G‘(f':a:RO:Rl:Ra) =0 (10)

Combining two terms, after interchanging dummy variables in one, and
neglecting the term involving (5£')2 yields
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1-BR 1-BR _ ) v
-BRo ~BRo BR1(t - n) I
M \/(l - 8)2 - 82R12 + Ao 7(&-a+PRa) V(a_ - )2 - B2Ra,2:,d§ =0 (11)

Since the variation &f£'(¢) is arbitrary,

1-BR
f t £'(n) cosh™t
-BRo

(1-8)@-n)-p2Ry°
BR1(E - 1)

an + 7\1\/(1 - )2 - B2R2 4+

7‘21(§-a+BRa)l/ (a - £)2 - g%R% = 0 (12)

An integration by parts, with £(-BRg) = O, yields

1-gR 5
1 £(n) dn - e _Z(§-a+BRa)\/(a - £)7 - p%Ry2
-BRp V(l - n)a _ BaRla(g - 1) V(l - §)2 - Blea
= () (13)
or, if
£(n) - ¥(n)
\/(1 -7)2 - 32312
then
fl'-BRl F(q) dn - H(g) (1,4-)
-8Rp £ -7
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The solution of equation (1k4) is

F(t) = 1 [K -
2/ (1 - BRL - £)(& + BRo)

/ 18R V(L - BBy - n)(n + BRo) E(n) an (1)

-BRg E -1

where K 18 a constant and’ § is in the range -BR, 5 g S1- BRy. A

discussion of the conditions for the exlstence of this solution is given
by Tricomi in reference T.

It is a straightforward procedure to show that the solution of equa-
tion (13) is

_11E+BRl-§ 1 - Ry - BRo )
n‘.’(E.)—=t2 % BT K+:0\l( : - &) +
1/2

a—ﬁRal-(a. + BRg - 1)(a2 - BRg - ) (n + BRa.)] dn
R | 1+ pR) -1 | -

Ao (16)

A convenient form of the solution, which cen be obtained by algebraic
manipulation, is

£(e) = 1" * PR - §l£{+n7\1(l-BR]—'-BR°- §)+

2

rp T(8RY) - I(g)] (17)

1+BRy - &

where

a-BRg 1/2
I(e) = fBRo |:(a+ BRe - 1)(a - PRy - n)(n + BRo)(1 + PRy - n)] §(1+n

(18)
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Requiring that f£(-pRg) = O yilelds

-\ (1 + PRy - &) (& + BRp) +7\2{
1+ BR

-————II(-ﬂRo) - I(l-l-ﬂRl)I + I(l-l-BR]) - I(¢)
) 1 + BRg
£(g) =

(29)

:1:2\/(1 + BRy - &) (& + BRo)

The constants A} and Ap are determined by satisfying the auxiliary
conditions, equations (5) and (6). The auxiliary conditions are special
cases of the general shape expression for the points (a,Rg) and (L,R1),

and 1n the general case numerilcal procedures are necessary in order to
satisfy them because I(§) could not be integrated. If in equation (19)
A2 1is set equal to zero, the result is the minimum-drag source-

distribution fumction for the "two-point" problem of reference 6.

The general shape expression is

12_](R2 _ 302) - fx-BR £(e) (x - £)at (20)
-BRO \[(x - £)? - p282

(which is eq. (27) of ref. 6, after interchanging the order of integra-
tion and performing one integration). The shape satisfies the Gothert
similarity rule (ref. 8) so that one calculation gives a functional rela-
tion between BR and x for given values of a, BRg, PBRy, and PBRg

and therefore gives a family of minimm-drag shapes.
CALCULATTIONS FOR A CLOSED BODY

For a closed body, PBRg = BRy = 0, the source-distribution function
(eq. (19)) reduces to

-

1

:ta\/.&(l - &)

£(g) =

RE2 - 8) + Mot [TW) - 2(0)] + Mo[T(0) - (2]

(21)
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where

a-fBRg, 1/2
I(e) = ‘_/; [(a. + BRa - n)(a - BRg - N)n(1 - Tl)] / gd"_] " (22)

The auxiliary-condition equation (5), after an integration by parts and
use of #£(0) = 0, reduces to

1
f £(¢) &t =0
0

which, when use is made of the fact that

1or(e) a
o \/g(l - E)

reduces the source-distribution function, equation (21), to

=0

1(¢) - 1(0) + [51(0) + 31(1)]§ - h[I(O) + 1(1)] g2

\/g(l - E)

(23)

£(g) = C

where

Since the last auxiliary condition to be satisfied (eq. (6)), which
fixes the constant WAp, is a speclal case of the shape expression, it is

convenient to rewrite equation (20) for the closed body as

U 2 PR op(e) _ (x-g)ar
——(BR)~ = . — (2k)
2p2c P 0 c \/(’x _ £)2 - p2g2

The velue of £(¢)/C may be calculated from equation (23). Evaluation
of equation (24) for x = a and BR = BRg (corresponding to the last
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auxiliary condition) fixes the value of U/282C. Then equation (24) is
a functional relation between BR and 'x giving the shepe of the minimum-
drag closed body.

The complete calculations were made for the case of a = 0.5 ‘and
BRg = 0.2, & closed body with the third point at the symmetrical mldpoint

position. Detalls of the calculation are given in the appendix.
DISCUSSION OF RESULTS

The problem of the three-point body of revolution that has minimum
wave drag, based on linearized supersonic-flow theory, has been solved
formally. Equations (19) and (20) permit the calculation of the shape
of the general three-point body that has minimum wave dreg. Except for
a slightly increased complexity in the first two integrations of equa-
tion (20), corresponding to the two auxiliary conditions, the calcula-
tions are essentially the same for a ducted body as for a closed body.
An actual ducted-body shape was not computed.

Figure 2 shows the integral I(t) and the quantity f(g)/C for
the computed closed body (a = 0.5 and PBRg = 0.2). The one-half-order
singularity in the slope of I(t) and £(tE) at E = 0.3 corresponds
to the corner at x = 0.5. The shape of the body is given in figure 3
and table I. An inspection of the mathematics shows that the cornmer is
present for any finite velue of BRy. In the slender-body limit (BRg

approeching zero) the corner vanishes as 2(:tBRa)2.

Recent unpublished work by Clinton E. Brown of the Langley
Aeronautical Laboratory shows that to the order of accuracy of linear
theory the wave drag of bodies of revolution is reversible. With the
plausible assumption thet the minimum-drag problem has a unique solu-
tion, the body computed here should be symmetrical. The slight asym-
metry found (see table I) is not to be interpreted as a refutation of
the reversibility theorem, since higher order terms, of appreciable
influence because the body chosen is rather thick, undoubtedly are handled
(included or omitted) in different weys in the different treatments.

Figure 4 permits an easy comparison of the minimm-drag body com-
puted in this report with other minimum-drag bodies which have been com-
puted. The ordinate is (Rpogy - Reone)/Rmax Where Rpogy is the redius
of the body, Rgopne 18 the radius of the cone whose vertex is at the nose
of the body and whose base is the meximum cross section of the body, and
Rpmax 1s the radius at the maximm section. The abscissa x 1is distance

along the body and the meximum section is at x = 0.5. The figure shows
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(4) the forward and (B) the rearward portions of the body computed herein,
(C) the corresponding linear-theory minimum-drag projectile tip, (D) the
Sears-Haack symmetrical length-caliber body, and (E) the Von Kérmin pro-
Jectile tip. The radii of the minimum-drsg bodies according to slender-
body theory (D and E) are functions of x only, whereas the radii of the
minimum-drag bodies according to linear theory (A, B, and C) are functions
of PBRq(=PRmax) as well as x.

It is epparent that the lack of symmetry of the body computed herein
(the difference between curves A and B) is of the same order as the dif-
ference between that body and two linear-theory minimum-dreg projectile
tips placed base to base. Both forward and rearward portions are thicker
than the projectile tip and their average is thicker than the projectile
tip in approximately the same proportion that the Sears-Heack length-
caliber body is thicker than the Von Kérmén projectile tip. In the
extreme case where PBRg = 0.5 (of course, completely outside the range

of velidity of linear theory) the body computed in this report would
become two Mach cones and the curves A, B, and C would collapse into the
abscissa. In the limiting case, BRy—>0, the three-point body becomes

the Sears-Haack length-caliber body; that is, curves (A) and (B) coalesce
into curve (D) while curve (C) approaches curve (E).

Therefore, in the range of validity of linear theory, the minimm-
drag length-caliber body with fixed caliber in the symmetricel position
is thicker in both forwerd and rearward parts than the corresponding
minimm-drag projectile tip. Thus the conclusion is reached that the
influence between the forward and rearwerd portions of a closed body
résults in a small increase in the radii of the minimum-drag shape.

CONCLUDING REMARKS

The problem of the three-point body of revolution that has minimum
weve drag, based on linearized supersonic-flow theory, has been solved
formally without resort to slender-body approximations. The source-
distribution function involves an integral which apparently cennot be
evaluated in terms of simple functions and for which a series expansion
may be used. Numerical quadratures are required to determine the shape
of the body. .

The complete calculations are made for a closed body with a given
section BRg = 0.2 at the midbody position .a = 0.5. The shape is
slightly asymmetric. A corner at the fixed-caliber position is foumd
to be characteristic of a linear-theory solution of the minimum-drag
length~celiber problem.
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A comparison of the comptrbed minimum body with other minimum bodies
leads to the conclusion that the influence between the forward and rear-
ward portions of a closed body results in a small increase in the radii

of the minimum-~drag sheape.

Langley Aeronautical ILaboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 15, 1956.
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APPENDIX
DETATIS OF THE CALCULATIONS

The source of difficulty in msking the celculations is the integral
I(¢) (eq. (22)), which sppears in the source-distribution fumection.
For a = 0.5 and BRg = 0.2,

0.3 1/2
I(g) = L [(0-7 - 1)(0.3 - 9)a(1 - n)] gd“ ; (A1)

Changing the variables so that 7 = 0.15(1 +y) and & = 0.15(1 + t)
yields

1/2

1[0.15(1 + t)] = 0.15\/(0.55)(0.85) f:l [(1 - % )( - % )J l-y2 (2)

t-y

If -1StS1 (0S¢t <S0.3) +the integral is singuler; if 1<t £ 17/3

(0.3< £ £1) it is not singular. Since singular and nonsingular inte-
grals of the type

P— (n=0,1,2, ...) (A3)

fl V1 -5 ay
-1
may be evaluated (singuler integrals of this type may be deduced from
Tricomi's paper, ref. T), the quantity

- 292"

was expanded in a power series in y. In this manner two series were
obtained for I(), one series for the range 0 <t <0.3 (-1 gt 1)

and one series for the range 0.35t 1.0 (L £+ <£17/3). The com-
putations were performed on a desk calculating machine and seven digits
were cerried. At most, twelve terms were required for seven-digit
accuracy. Values of I(t) were computed at approximately 120 points in
the range 0 £ & £ 1, with the intervals smaller in the regions where
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I(¢) or #£(&) changes rapidly. Equation (23) was then used to calculate
£(e)/Cc at the points at which I(E) had been evaluated.

In the shape expression (eq. (24))

U gm2a [CTEE) G- e (ak)
2a%c 0 C \ftx-¢)2 - p2R2

The integrel was evaluated either by Simpson's rule for graphical inte~
gration or by replacing f£(t)/C by a quadratic in ¢ over a small range,
depending upon how rapidly the integrand was changing. First, equa-

tion (A4) was evaluated for x = 0.5 and BR = 0.2, which fixed the
value of the constant U/2BEC. For a typical point on the body, a vealue
of x was chosen and the two members of equation (A4) were calculated
for trial velues of PBR, and by interpolation a value of BR was found
to satisfy equation (Al).

Figure 2 shows the variation of the integrel I(t) and the quantity
£(¢)/C with E. Figure 3 and teble I give the shape of the computed
closed body, a = 0.5 and PBRg = 0.2. It is believed that the overall
error of the numerical procedure is such that the f£ifth decimal place
for BR 1s significant.
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TABLE 1

COMPUTED ORDINATES FOR THE CLOSED BODY WITH

a=0.5 AND BRg = 0.2

x gR

(o] o]
.1 .05764
.2 .10120
.3 .13862
A 171k
k9 .19733
5 .20000
.51 -19752
.6 .17285-
T .1hohT
.8 .10288
.9 .05866

1.0 o]
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